

Гибридный нейросетевой подход к прогнозированию загрязнений атмосферы с верификацией по данным дистанционного зондирования Земли

КОЛЕСНИКОВ П.В.

НТЦ МОНИТОРИНГА ОКРУЖАЮЩЕЙ СРЕДЫ И ЭКОЛОГИИ МФТИ, Г. МОСКВА

Постановка задачи

АКТУАЛЬНОСТЬ

СУЩЕСТВУЮЩИЕ РЕШЕНИЯ

В рамках Федерального проекта «Чистый воздух ставится задача обеспечения снижения уровня загрязнения в ряде промышленных городов и контроля исполнения мероприятий по сокращению выбросов. Оперативный контроль в городской среде осложняются маломасштабной природа атмосферных процессов, влиянием городской инфраструктуры и пространственной неоднородностью источников эмиссий сильно усложняют корректное воспроизведение полей концентраций.

Целью работы является разработка методологии формирования обучающей выборки на основе прогнозов ансамбля моделей для обучения нейросетевого эмулятора модели переноса химических веществ.

Статистические модели: Быстро дают прогноз, но упрощённо учитывают физику атмосферы. Из-за игнорирования ключевых динамических процессов (турбулентность, конвекция и т.п.) их предсказательная способность ограничена [1]

Гидродинамические модели (Численные

ХТМ): Основаны на уравнениях атмосферы и химии, точно описывают физические процессы переноса и трансформации примесей. **Недостатки:** требуют больших вычислительных ресурсов, особенно при высоком разрешении, и плотных входных данных (метеоусловия, эмиссии). Также, в городском масштабе обычно не хватает пространственного разрешения. [2]

Предлагаемое решение

Идея: Использовать нейронную сеть для эмуляции XTM. Нейросеть обучается воспроизводить результаты сложной модели, но требует на порядок меньше вычислительных затрат.

Данные для обучения: Использованы выходные поля прогностической модели WRF-ARW, результаты прогностической химико-транспортной модели (концентрации PM2.5) и наблюдения PM2.5 с городской сети мониторинга. [3,4] Для учёта неопределённостей создан ансамбль запусков WRF с небольшими возмущениями ветра, что делает выборку более разнообразной и повышает устойчивость решения к ошибкам прогноза погоды (рис.1, 2). [5]

Результат: Эмулятор выдаёт приближённые по качеству поля загрязнения, близкие к результатам CHIMERE. Преимущество: существенное ускорение расчётов при минимальной потере точности. Подобный подход уже применялся для ускорения прогнозов PM2.5 — точность при использовании ML-метода Extra Trees Regression ~80% при прогнозе на 2 дня. [6]

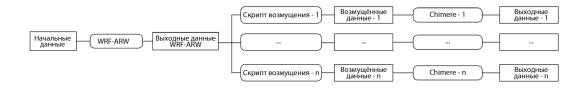


Рис. 1. Схема генерации ансамбля обучающей выборки из n элементов (переменная V)

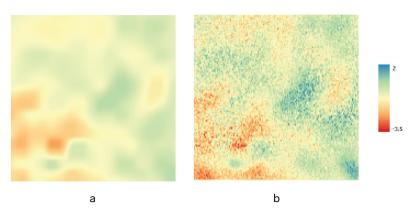


Рис. 2. Визуализация исходных (а) и возмущённых (б) выходных данных модели WRF-ARW (переменная V)

Использование данных Д33

Идея: В регионах с недостаточной наземной сетью Д33 могут обеспечить ценную информацию о распространении загрязнений. Несмотря на то, что прямого измерения концентрации РМ2.5 из космоса нет, можно использовать аэрозольную оптическую толщину (AOT). [7]

Эффективность: сочетание спутниковых наблюдений с модельными данными существенно повышает точность оценки PM2.5. Так, глобальная оценка PM2.5, выполненная по спутниковой АОТ с поправкой по модели GEOS-Chem, показала хорошее совпадение с наземными измерениями (R^2≈0.6). Подходы с машинным обучением достигают R^2~0.8 при включении спутниковых параметров (АОТ, метеополя и др.) в модель построения поля PM2.5 [7]

Ограничения космических данных. В числе общих ограничений можно выделить пространственное и временное разрешение и облачность. Также, АОТ — это интегральная характеристика по всей толщине атмосферы. Выделить из этого сигнал у земной поверхности сложно — требуются модели или эмпирические зависимости.

Комбинирование моделей и Д33: Оптимально использование нейросетевого эмулятор для оперативных прогнозов, а спутниковые данные применять для периодической калибровки и валидации модели. (рис. 3)

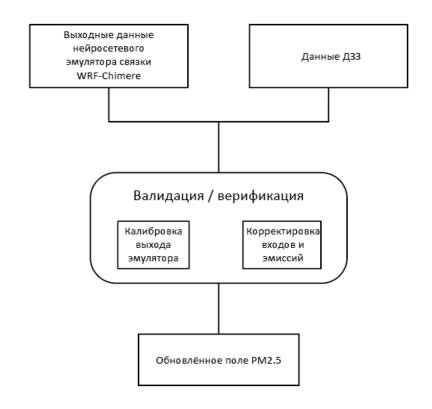


Рис. 3. Схема объединения быстрого прогноза нейросети с уточнением по спутниковым данным

Заключение

ВЫВОДЫ

- Гибридный подход нейросетевого эмулятора XTM обеспечивает оперативную информацию PM2.5 с близким к XTM качеством при существенно меньших затратах.
- Данные Д33 позволяет делать систематическую калибровку выходов эмулятора.
- Периодическая коррекция по Д33 снижает смещения и повышает устойчивость прогноза к ошибкам.

ДАЛЬНЕЙШИЕ ШАГИ

- Отбор Д33-продуктов под целевой регион
- Кросс-валидация: сопоставление АОТ/газов со станциями и с прогнозом нейросетевого эмулятора, настройка преобразования АОТ PM2.5
- Настройка регламента калибровки
- Встраивание калибровки в систему

Список литературы

- 1. Соснин, А.С. Обзорная статья по программам серии «эколог» Москва: Интеграл, 2015.
- 2. Р.Ю. Игнатов, М.И. Нахаев, К.Г. Рубинштейн и др. Система прогноза переноса загрязняющих веществ в атмосфере регионов России // Оптика атмосферы и океана, 37, №12, 2024. DOI: 10.15372/AOO20241209
- 3. Нахаев М.И., Березин Е.В., Шалыгина И.Ю., Кузнецова И.Н., Коновалов И.Б., Блинов Д.В. Прогнозирование концентраций загрязняющих веществ в атмосфере с применением химической транспортной модели Chimere и модели COSMO-Ru7 // Труды Гидрометцентра России. 2015. Вып. 357. С. 146-164.
- 4. Skamarock W.C., Klemp J.B., Dudhia J. et al. Description of the Advanced Research WRF Version 3.NCAR Technical Note. DOI: 10.5065/D68S4MVH.
- 5. Рубинштейн К.Г., Курбатова М.М., Коняев П.А., Киселёв А.А. Влияние ошибок воспроизведения ветра численными моделями динамики атмосферы на прогноз распространения загрязнения атмосферы в печати
- 6. Vo Thi Tam Minh, Tran Trung Tin, To Thi Hien. PM2.5 Forecast System by Using Machine Learning and WRF Model, A Case Study: Ho Chi Minh City, Vietnam. Aerosol and Air Quality Research. DOI: 10.4209/aaqr.210108, 2021
- 7. Park, S., Shin, M., Im, J. [et al]. Estimation of ground-level particulate matter concentrations through the synergistic use of satellite observations and process-based models over South Korea, Atmos. Chem. Phys., 19, 1097–1113, https://doi.org/10.5194/acp-19-1097-2019, 2019.